Home
Omar Hosney
LinkedIn

Machine Learning Techniques Cheatsheet

Linear Regression 📈

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

Logistic Regression 🚀

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

Decision Trees 🌳

from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

Random Forest 🌲🌲

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

Support Vector Machines (SVM) 🛡️

from sklearn.svm import SVC
model = SVC()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

K-Nearest Neighbors (KNN) 👥

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

K-Means Clustering 🎯

from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(X)
clusters = model.predict(X)

DBScan 🚀

from sklearn.cluster import DBSCAN
model = DBSCAN(eps=0.5, min_samples=5)
model.fit(X)
clusters = model.labels_

Hierarchical Clustering 🏰

from scipy.cluster.hierarchy import dendrogram, linkage
linked = linkage(X, 'single')
dendrogram(linked)