Omar Hosney
LinkedIn Profile

LLM Fine-Tuning Cheat Sheet ๐Ÿš€

Quantization ๐Ÿ”ข

LoRA (Low-Rank Adaptation) ๐Ÿ”ฌ

QLoRA ๐Ÿ”ฌ๐Ÿ”ข

Fine-Tuning Process ๐Ÿ”ง

Prompt Engineering ๐Ÿ’ฌ

Evaluation Metrics ๐Ÿ“Š

Ethical Considerations ๐Ÿค”

Tools and Frameworks ๐Ÿ› ๏ธ


LLM Fine-Tuning using Gradient Package ๐Ÿš€

Gradient Package: Setup ๐Ÿ› ๏ธ

# Install Gradient pip install gradient # Set up environment variables import os os.environ["GRADIENT_WORKSPACE_ID"] = "your_workspace_id" os.environ["GRADIENT_ACCESS_TOKEN"] = "your_access_token" # Initialize Gradient from gradient import Gradient gradient = Gradient() # Get base model base_model = gradient.get_base_model("base_model_slug")

Gradient Package: Data Preparation ๐Ÿ“Š

# Prepare sample data samples = [ { "instruction": "Who is Krish?", "response": "Krish is a popular mentor and YouTuber who uploads videos on data science and AI." }, { "instruction": "What do you know about Krish?", "response": "Krish is a content creator specializing in data science. His YouTube channel provides educational content on AI and machine learning." } ]

Gradient Package: Fine-Tuning ๐Ÿ”ง

# Create model adapter new_model = base_model.create_model_adapter("my_fine_tuned_model") # Fine-tune the model num_epochs = 3 for epoch in range(num_epochs): new_model.fine_tune(samples=samples) # Test the fine-tuned model query = "Tell me about Krish" response = new_model.complete(query).generated_output print(response)